Diffraction-Based Optical Switching with MEMS

نویسندگان

  • Pierre-Alexandre Blanche
  • Lloyd LaComb
  • Youmin Wang
  • Ming C. Wu
چکیده

We are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports. We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32× 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch

This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...

متن کامل

Robust Lyapunov-based Control of MEMS Optical Switches

In this paper, a robust PID control scheme is proposed for Micro-Electro-Mechanical-Systems (MEMS) optical switches. The proposed approach is designed in a way which solves two challenging and important problems. The first one is successful reference tracking and the second is mitigating the system nonlinearities. The overall system composed of nonlinear MEMS dynamics and the PID controller is ...

متن کامل

Robust Lyapunov-based Control of MEMS Optical Switches

In this paper, a robust PID control scheme is proposed for Micro-Electro-Mechanical-Systems (MEMS) optical switches. The proposed approach is designed in a way which solves two challenging and important problems. The first one is successful reference tracking and the second is mitigating the system nonlinearities. The overall system composed of nonlinear MEMS dynamics and the PID controller is ...

متن کامل

Digital MEMS for Optical Switching

Over the last few years an amazing amount of interest has emerged for applications of micro electro-mechanical systems (MEMS) in telecommunications. Silicon-based optical MEMS have proven to be the technology of choice for lowcost scalable photonic applications because they allow mass manufacturing of highly accurate miniaturized parts, and use materials with excellent mechanical and electrical...

متن کامل

Micro-Electro-Mechanical Systems (MEMS) for WDM Optical-Crossconnect Networks

MEMS (Micro-electro-mechanical systems) have shown promise for optical crossconnects in WDM networks. We will describe various MEMS optical-switching technologies, their successes in implementing important optical-networking functionalities, and future perspectives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017